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Abstract

This paper looks at Agent�Based Simulations (ABS) from
a Dynamical Systems (DS) point of view. For this purpose,
�rst, a comparison of ABSs and DSs models with respect to
modelling and analysis is made. Since qualitative analysis of
high�dimensional, non�linear ABSs is not feasible, this pa-
per introduces a new analysis approach using the example of
the sugarscape population model. In this method, the birth
and reproduction rate are measured for every possible pop-
ulation size, N , which yields an approximate iteration map
for the ABS. Plotting the accumulation ∆N(N), therefore,
provides a global view on the simulation as a whole. This
helps understanding the dynamic behaviour of complex sys-
tems, and it makes possible a bifurcation analysis for the
sugarscape simulation. Possible applications of this method
for di�erent kinds of ABSs are also discussed.

1 Introduction

During the last years, the research of emergent phenom-
ena became interesting to a large number of researchers
from very di�erent research areas. This is due to the fact
that the real world is full of emergent structures [9, 16].
Even though there is no standardized de�nition of emer-
gence, most researchers agree that emergence is some
kind of macro�behaviour produced by a number of indi-
viduals and the mutual dependencies in between them.

ABS is based largely on this metaphor. Especially
popular among social scientists [5, 6], it represents one
of the main approaches to understand emergent phe-
nomena. In ABSs, a natural or social system is virtually
created by placing a number of individuals in an envi-
ronment, and by de�ning simple rules of interaction in
between the individuals, as well as in between the indi-
viduals and their environment. In the analysis of ABSs,
usually, aggregate variables are measured and displayed.

A second approach to understand complex real�world
phenomena uses DS theory and mathematical modelling
techniques [8, 10, 1]. It bases on the �nding in the nat-
ural sciences that many natural phenomena are deter-
mined by di�erential equations (DEs), and, in fact, DS
theory developed from the theory of DEs. Here, models

are developed that match the macro�behaviour observed
in the real world. These models are analysed by numer-
ical simulations as well as by analytical considerations,
and it is often possible to understand completely how
such a system behaves as t →∞.
Since ABSs and DSs have been used in the research of

very related phenomena, combining the two can bring
along a better understanding of emergent behaviour. In
particular, a more formal treatment of ABSs becomes
possible when looking at these simulations from a qual-
itative viewpoint.
In this paper, a graphical method useful in the analy-

sis of DSs is applied to ABSs. This concept is illustrated
at the sugarscape population model presented in [5], and
it is shown to be possible to qualitatively understand the
dynamics of this simulation. Computing the expected
change in the aggregate variable (population size, N , in
this case) of the ABS for all possible N , yields an ap-
proximate iteration map N t+1 = f(N t) = N t + ∆N t,
the analysis of which is the main business of the DS
theory. A qualitative view on the simulation as a whole
can then be obtained by plotting the N −∆N diagram.
Generating these plots for di�erent parameters in the
agent rules, it is even possible to detect bifurcations in
the sugarscape model.
The remainder of this paper is organized as follows:

The next section presents the research related to the
present discussion. Then, positive and negative aspects
of ABS and DS are discussed with respect to the mod-
elling and the analysis task. In Section 4, after intro-
ducing the graphical method, a qualitative analysis of
the sugarscape model is performed. Finally, the results
are discussed and a conclusion on the paper as a whole
is drawn.

2 Background and Related Work

Although there are some works pointing out the need for
a joint research of ABSs and DSs (e.g., [5, 11, 15]), there
are only a few attempts to combine them in the analysis.
Presented papers compare the two approaches (as [15]
for cellular receptor dynamics and [14] for bilingualism
in a small population), but a direct application of DS



analysis methods to AB systems is usually not done.
The author found only three attempts which go be-

yond the comparison of both approaches [7, 3, 4]. Fahse
et al. [7] and Duboz et al. [3], use ABSs to make mathe-
matical population models more realistic. The popula-
tion growth rate is extracted from an ABS, in which the
agents do behave, but do not age, die and reproduce. A
similar approach is used here in the estimation of the
iteration map for the sugarspace population. However,
in [7] and [3], the extracted data is used to adjust the
parameters of a mathematical model. Qualitative anal-
ysis can be performed using this model. In this paper, a
way to directly analyse ABSs, without deriving a global,
aggregate model from it, is presented.
In [4], Edwards et al. compare an individual�based

model for innovation di�usion with an aggregate model,
derived from the AB model using the probability distri-
bution in the model states. They show that the aggre-
gate model approximates the results of the AB model in
some cases, but fail to do so in other cases. Graphical
analysis of the aggregate model is used to explain the
di�erences in the results. The graphical method used
in [4] is very similar to the method used in this paper.
However, as noted above, we are interested in under-
standing the dynamics of ABSs using data directly ob-
tained from the simulation.
For this purpose, an AB population model based on

the sugarscape model presented by J. M. Epstein and R.
Axtell [5] is used. Even though the sugarscape example
is well�known among social scientists, it seems necessary
to the author to recall the most important components
of this model.

2.1 The Sugarscape Population Model

The sugarscape model, agents act in an environment
consisting of 50 × 50 �elds, each of which holds a cer-
tain amount of sugar. During each simulation step, the
agents move in the environment, collect sugar and re-
produce if certain conditions are ful�lled. Agents die,
if their age (incremented in each step) is above an ini-
tial (randomly chosen) value between 60 and 100, or if
they have no sugar. This can happen, because agents
consume a certain amount of sugar de�ned by their
metabolism. The agent's metabolism is uniformly dis-
tributed in {1, . . . , 4}. Along with di�ering vision from
agent to agent (uniformly in {1, . . . , 6}) and a di�er-
ent amount of initial sugar (uniformly in {50, . . . , 100}),
this results in a heterogeneous agent population acting
on the sugarspace.
For the sake of comparability1, the implementation

used in this paper relies as much as possible on the im-

1One problem of research using ABS is the di�culty for others
to reproduce and check simulation results. In general, two imple-
mentations of the same problem will di�er to some extend, and
so will the simulation results.

plementation described in [5]. The sugar grow back rule
G(α) is de�ned by st+1 = min(st + α, smax), which
means that, in each time step, the amount of sugar, s,
in each lattice point is increased by α until the maxi-
mum sugar level smax is reached. The agents are allowed
to move (M(v)) in the four major directions, as far as
vision allows. They search for the nearest unoccupied
position of maximum sugar, go there and collect the
sugar.
After moving, agents attempt to reproduce with all

their neighbours in the Moore neighbourhood, choosing
them in random order. But reproduction is only allowed
if both agents are fertile, of opposite sex, and if there
is a free �eld near one of them (the "child" is placed
at this �eld). Each time reproduction takes place, the
agent's wealth (the sugar it accumulated) is divided by
two. A male agent is fertile if his age is between a and
b, and if his accumulated sugar exceeds e. A female
agent is fertile if her age is between c and d, and if her
accumulated sugar exceeds e. The reproduction rule can
therefore be formally written as R(a, b, c, d, e).

3 AB Modelling and DS Analysis

ABS and DS are both concerned with the modelling
and the analysis of complex social, biological, etc. phe-
nomena, in order to understand better the behaviour
observed in the real world. In general, however, they
di�er greatly in the way they approach the modelling
and the analysis task.
In ABSs, a number of individual agents is distributed

in a virtual space, and the modelling is mainly con-
cerned with de�ning appropriate rules of interaction be-
tween these individuals. Rules usually include stochas-
tic processes, accounting for heterogeneous individual
behaviour. And also, in most of the cases, the initial
agent distribution in space is determined by stochasti-
cal means. Once the rules are speci�ed, the behaviour
of the system is obtained by running the simulation.
In contrast to ABS, DS modelling starts at the global,

more abstract level. Usually, time series data, observed
in the real world, is used as a starting point for the de-
velopment of mathematical models2. The modeller uses
(sometimes very speci�c) knowledge of the respective
research area, to create a prototype model that includes
the most important aspects of the considered problem.
The parameters of such a prototype model are then ad-
justed, in order to �t the data found in the real world
system. By looking at the problem from a global view-
point, DSs do not take into account individual aspects,
implicitly assuming the population to be homogeneous.
This can be a reasonable assumption in some cases, but

2See, e.g., [10] and [12] for good overviews of mathematical
population models.



there are other cases where heterogeneity plays an im-
portant role.

Besides the presence of heterogeneity, the main bene-
�t of AB modelling is that these models can be heuris-
tically understood by the non�scientist. Rather intu-
itively, observed individual behaviour is put into simple
agent�agent rules, and that's all about it. The DS ap-
proach, in contrast, is often clear only to the specialist,
since the behaviour of the individuals, though implicitly
considered during the modelling, is not obvious in the
�nal model. As a result, DS mathematical models are
often di�cult to communicate to the non�professional.

But the DS approach bears a great advantage over the
AB approach: it can be analysed by qualitative means,
so that, in a considerable number of cases, the dynamics
of the model can be completely understood. By such a
qualitative analysis, it is possible to assure what hap-
pens to the system as time approaches in�nity, t →∞.
Moreover, it is possible to �nd exact parameter constel-
lations, at which the system dynamics change from one
behaviour to another. In the theory, this is referred to
as a bifurcation [2, 8].

Detecting such qualitative changes of the dynamics
resulting from ABSs would bring along great advances
in the understanding of these models, because speci�c
changes in the rules of the model could be related to
speci�c changes in the emergent structure. This would
facilitate the modelling process, because the qualitative
information can be used to �nd rules that yield realistic
behaviour. Moreover, a better understanding of systems
of multiple mutual dependent individuals can be gained,
once the rules between the individuals can be related to
speci�c dynamic behaviours of the system. The next
section describes a possible way of detecting qualitative
changes of the sugarscape ABS.

By now, analysis of ABSs is usually performed by run-
ning a series of simulations, while, more or less system-
atically, changing the initial setup and the parameters of
speci�c rules. This is a tedious and often tremendously
time�consuming task. Moreover, the results have to be
examined very carefully, since, due to the stochastic pro-
cesses involved, no two simulations yield the same result.
Furthermore, we cannot be absolutely sure how the sys-
tem evolves as t → ∞, because each simulation run is
stopped after a particular time.

The latter question, however, is also important in
DS research, if numerical simulations are carried out
to analyse the system behaviour. In general, numeri-
cal analysis, considering a �nite time interval only, does
not provide assured knowledge about the long�time be-
haviour of the system. This becomes evident having in
mind that we are dealing with dynamics at the edge
of chaos and order, in which case small changes in the
simulation con�guration (or even the limited precision

of �oating point operations!) might cause tremendous
di�erences in the simulation result. In DS research as
well as in ABSs, it is therefore very important to look
at the system from an analytical viewpoint, since assur-
ance of the system behaviour can be obtained only by
this means.
To summarize, ABS is well�suited for the modelling of

complex systems, but a complete analysis of the system
behaviour can be very di�cult (often impossible). DS
theory, on the other hand, provides a useful framework
for the analysis of complex systems, but simplifying as-
sumptions for the modelling might make mathematical
models less realistic and less understandable. Applying
DS methods to ABSs, as shown in the sequel, is one way
to overcome these problems.

4 Population Dynamics on the

Sugarspace

The research of population dynamics aims to explain
how the number of individuals of a certain species
evolves in time. We are not interested in how a partic-
ular individual behaves. Therefore, often mathematical
models have been used in this area [10, 12]. However,
Epstein and Axtell [5] showed that realistic population
dynamics can be observed also in an ABS, in which the
heterogeneity of the individuals is explicitly taken into
account. In this section, a formal analysis of the dynam-
ics of their sugarscape population model, de�ned by the
rules presented in Section 2.1, is performed.

Figure 1: The sugarscape population size for 2500 time
steps. Di�erent colours represent di�erent initial num-
ber of agents, N0.

Let's �rst look at di�erent time series (also called or-
bits) produced by that model, when altering the ini-
tial number of agents N0. The grow back rule G(3),
and the reproduction rule R(a, b, c, d, 50) with a, c ∈



{12, . . . , 15}, b ∈ {40, . . . , 50} and d ∈ {30, . . . , 40} are
used3. In Figure 1, basically, two possible courses are
observed, depending on the initial number of agents. If
the initial population is small (N0 < 80), an extinction
of the species is likely to happen (dark blue and yel-
low), and if N0 is large enough (>180) the population
cycles around N = 1200 (blue, green and red). In the
case that 80 < N0 < 180, both behaviours are possible,
which is due to the stochastic parameters involved into
the simulation.
From a qualitative viewpoint, there are three impor-

tant points (regions). Clearly, N∗
1 = 0 represents a �xed

point attractor, for once this point is reached, the orbit
always remains there4. Another attractor is represented
by the upper blue shaded region around N = 1200. In
all the simulations performed, the population remained
within this region, once it was reached. The second blue
shaded region at 80 < N < 180 represents a repelling re-
gion [13]. Orbits that start in this region will eventually
leave it under iterations.
The number of agents on the sugarscape is a one�

dimensional (1D) variable. Therefore, the time evolu-
tion of N can be written as a iteration map N t+1 =
f(N t). In 1D DSs, where f is usually known explic-
itly, the behaviour of the system can be understood by
a graphical analysis5. For ABSs, however, we do usu-
ally not have at hand an explicit map, for the transition
from one time step to the other is de�ned by a high�
dimensional, non�linear and stochastic system. But by
measuring the deciding variables of the ABS, we can ob-
tain an approximate map f(N t), which allows us to use
similar methods.
The evolution of the sugarscape population from one

time step to the other is de�ned by

N t+1 = N t + r(N t)− dh(N t)− da(N t), (1)

where r(N t) represents the number of new born agents,
dh(N t) the number of agents dying, because they lack
sugar, and da(N t) accounts for the number of agents
that die, because they reached their maximum age. A
map f can therefore be obtained by measuring those
three terms.
This measurement is done by stepwisely increasing

the number of agents, N , from zero to 2500 (= 50×50),
and by counting the new born agents and the agents that
would die. Note that we do not remove dying agents,
nor do we create the new borns; we merely count the
cases in which the conditions for the respective action

3The reproduction rule corresponds to the rule used in [5] (page
64). However, there, the grow back rule G(1) is used.

4A �xed point N∗ is a point for which N∗ = f(N∗). See [2, 8]
for details.

5The reader is referred to [2] for an excellent description of
graphical analysis methods.

are ful�lled. Because results will di�er for each run, the
average of a number of time steps is taken. This number
should be larger than 100 in order to make sure that at
least one entire generation of agents is considered in the
measuring. Here, 111 time steps have been used.

Figure 2: Measuring r(N), dh(N) and da(N) for all N
to obtain an approximate iteration map f(N).

The measurement is started with N = 0. Over the
next 111 simulation steps, r, dh and da are summed up
and divided by 111 to obtain the average reproduction
and death rate. (Obviously, r(0) = dh(0) = da(0) = 0.)
Then, 10 new agents are placed randomly on the sug-
arspace, and the counting procedure is repeated for the
estimation of r(10), dh(10) and da(10). After another
111 time steps have passed, again, 10 more agents are
created and the measurement is performed. Repeating
this procedure for N = 0, 10, 20, . . . , 2500 yields an esti-
mate of the unknown terms in 1, as shown in Figure 2.

Figure 3: ∆N is plotted with respect to N . Since the
data is obtained from a stochastic ABS, ∆N(N) alters
within some range.

Having these estimates, we plot the change in the
agent number de�ned by ∆N = r(N)− dh(N)− da(N)



for all N . This is shown in Figure 3. By the help of
this plot, we see for which N the agent number in-
creases (∆N > 0) and for which N a decrease happens
(∆N < 0). The N for which ∆N ≈ 0, represent the
attracting and repelling regions of the simulation, since
the agent number is not changing in these cases.

Figure 4: A close up view on ∆N(N) for 0 < N < 250.

Figure 3 shows the course of ∆N(N) for 0 < N <
2500. Since the course near N = 0 is not clearly
visible at this scale, a close up view is shown in Fig-
ure 4. The images illustrate that there are three regions
in which ∆N(N) crosses the horizontal axis, for G(3)
and R(a, b, c, d, 50). And clearly, the values N at which
this happens, correspond to the three decisive regions
pointed out in Figure 1. The �rst crossing takes place
at N∗

1 = 0, which veri�es that this is a �xed point.
Looking at the estimates, ∆N , near this point makes
clear that this point is attracting. Since values are be-
low zero, N t+1 < N t, and the series approaches N∗

1 = 0
after a few iterations.

The second crossing region is located around
80 < N < 140. Let's denote this by N∗

2 ≈
{N : 80 < N < 140}. This region is repelling, since
∆N < 0 for N < N∗

2 and ∆N > 0 for N > N∗
2 . This

means that the iteration of smaller N eventually ap-
proaches zero, and that also the iteration of larger N
forces the series away from this region. In the latter
case, the orbits will eventually reach the second attrac-
tor of the map, N∗

3 ≈ {N : 1100 < N < 1400}. This
region is attracting, since ∆N > 0 for N < N∗

3 and
∆N < 0 for N > N∗

3 . In particular, it becomes obvious
that very large initial populations diminish under the
repeated iteration of the ABS until they reach N∗

3 .

The main bene�t of looking at the ABS in this way,
is that it provides a global view on the simulation as
a whole. From a single graph, we obtain knowledge of
the system behaviour for all possible initial values N0.

Moreover, to a certain extend, it provides the means to
assure the systems behaviour as t → ∞. For instance,
since ∆N is signi�cantly larger than zero for 500 < N <
1000, the sugarscape population will not die out once it
reached N∗

3 .
However, also some care must be taken in the interpre-

tation of such diagrams. Since ∆N is a stochastic term
and an average value is used for its estimation, there
might be simulation steps for which the actual ∆N de-
parts greatly from the estimation. Therefore, a critical
consideration of the signi�cance of the estimated ∆N
is necessary, mainly regarding the distance to ∆N = 0
and the variance of the estimation6.
At any rate, having at hand a global overview of the

system dynamics, facilitates a bifurcation analysis for
the sugarscape simulation. Basically, a bifurcation in-
dicates a qualitative change of the system behaviour7.
Plotting the N − ∆N diagrams for di�erent parame-
ters in the rules of the ABS, we may �nd out for which
parameters such a qualitative change happens.

Figure 5: The N−∆N plot for di�erent grow back rules.

Figure 5 shows that at the example of the sugar grow
back rule G(α). The N −∆N diagram is generated for
α = 1, 2, 3. In the case of G(3) and G(2), three regions
for which N ≈ 0 are observed. If G(1) is used, whereas,
∆N(N) shows a monotonically decreasing course, which
is zero only at N = 0. This indicates that a bifurcation
takes place between G(2) and G(1). In fact, the ABS
using G(1) does not any longer possess the regions N∗

2

and N∗
3 , but a single �xed point at N∗

1 = 0, to which all
the orbits are attracted. This is a qualitative change in
the system's behaviour.
The Figures 6 and 7 show the respective time se-

quences for G(2) and G(3) using a number of di�erent

6For instance, the values for 0 < N < 80 are very close to zero,
but the variance is also low in this region, whereas for 500 < N <
1000 the variance is larger, but so is the distance to the zero axis.

7The de�nition of a bifurcation in DS theory is based on the
notion of structural stability. Since the description of this concept
for ABSs is beyond the scope of this paper, the reader is referred
to [8] for a very clear de�nition of a bifurcation in DSs.



initial values. This makes clear that it is indeed possible
to understand the behaviour of the sugarscape simula-
tion, by means of a single diagram.

Figure 6: Di�erent orbits of the ABS using G(2). Note
the surprising course of the dark green and magenta
orbit. In both cases, the agent population dies out at
one of the sugar mountains, but settles on the other one.

Figure 7: Di�erent orbits of the ABS using G(1). An
extinction of the population takes place in all the cases.

But in Figure 6, also the limitations of graphical anal-
ysis of ABSs become clearer. First, a fairly surprising
behaviour can be observed for orbits starting at the re-
pelling region N∗

2 ≈ {N : 50 < N < 130}: in some cases,
the agent population dies out at one of the sugar moun-
tains, but settles on the other one. This indicates the
existence of a third attracting region for this system.
Unfortunately, this behaviour is not obvious from the
N − ∆N plot. (Note, however, that for G(3) this at-
tractor does not exist, since agents are able to re�settle
on the other sugar mountain.) Another limitation of

the method becomes clear by looking at the great out-
burst of the dark green orbit starting in the repelling
region. The population size returns to N∗

2 , in which
case an extinction of the population is also possible. A
more detailed graphical analysis of the region around
N = 300 could bring along a deeper understanding of
this e�ect.
Let's consider another bifurcation, which takes

place when G(1) is used and the reproduction rule
R(a, b, c, d, e) is changed. As shown in [5], the most
crucial parameter in this rule is the amount of sugar
required for the agents to be fertile, e. While e = 50
results in extinction of the population in all the cases
(compare Figure 1), e = 28 yields an orbit cycling
around N = 2000 (see Figure 8 and 9). Obviously, a
qualitative change of the system dynamics takes place.

Figure 8: The N −∆N plot for di�erent values e in the
reproduction rule R(a, b, c, d, e).

Figure 9: Time sequences obtained by di�erent repro-
duction rules using the same initial population N0. Note
that 5000 iterations are used here.

Figure 8 compares the N−∆N plots for four di�erent
values e. For e = 28 and e = 36, just as in the case of



G(2) and G(3) in Figure 5, three regions are observed
in which ∆N(N) crosses the horizontal axis. Therefore,
from the qualitative viewpoint, the same behaviour is
to be expected, i.e., the system possesses two attrac-
tors: the trivial �xed point N∗

1 = 0 and N∗
3 , and also an

repelling region N∗
2 . For e > 42, the system only pos-

sesses one attracting �xed point, N∗
1 = 0, which means

an extinction of the population in every case. But what
happens in the case that 36 < e ≤ 42?
To answer this question, let's consider for a moment

that ∆N(N) is a deterministic function and e is a con-
tinuous parameter. In this case, there is a parame-
ter value ẽ for which exactly two �xed points N with
∆N(N) = 0 exist, one of which is given by N∗

1 = 0.
In the left and right neighbourhood of the second �xed
point, N∗

2 , ∆N is below zero. For this reason, this point
attracts orbits starting at N > N∗

2 , but iterations of
N < N∗

2 are repelled by it and tend to zero.
Although we are not dealing with deterministic sys-

tems, this reasoning can be applied to the example con-
sidered here. Actually, the e�ect of a region attracting
to the one side and repelling to the other is observed in
the time series produced by e = 42 (see Figure 9). The
orbit �rst approaches an attractor, remains there for
some (relatively long) period, but eventually leaves the
region and approaches N∗

1 = 0. Obviously, this is due to
the stochastic parameters involved into the ABS. On a
long term, it is likely that a sequence of random values
is produced, which brings the population size very close
to N∗

1 , so that it is eventually attracted by this point.
And randomness is also the reason for which it is im-

possible to �nd an exact parameter value ẽ, at which
the system undergoes this bifurcation. However, close�
up analysis of the critical region around N∗

2 indicates
that 39 ≤ ẽ ≤ 42. Recalling that the sugarscape model
is highly non�linear, mostly discrete in the state vari-
ables and stochastic, the author considers this a useful
approximation.

5 Discussion

Using the graphical method presented in the last sec-
tion, the researcher is given at hand a single diagram to
predict and explain the behaviour of an ABSs. This can
help greatly in the analysis of such systems.
Moreover, providing a global view on the simulation

as a whole, the method can be used to compare di�erent
implementations of the same problem. By this means,
the results of ABSs become more traceable by others.
For instance, in the implementation of the sugarscape
model used here, no reproduction rules R(a, b, c, d, e)
have been found that produce regular, large amplitude
oscillations as shown in [5] (pages 65 and 66). Sequences
move less regular and remain within the attracting re-

gion. The reasons for the di�erences in the behaviour
could be found by comparing the N −∆N diagram for
both implementations.
However, in order to become a general analysis

method for AB models, its applicability to di�erent
kinds of ABSs must be shown. Obviously, when ABSs
are used to simulate the time�behaviour of a single
aggregate variable, the application of the method is
straightforward. Basically, an application is possible in
all the areas in which, traditionally, ABSs and mathe-
matical models are used. For di�erent kinds of ABSs,
it is necessary to �nd a global variable which provides
information about the important states of a system, and
to use estimates of this variable in the generation of the
N − ∆N diagram. This can be di�cult in some cases
(e.g., if the emergent structures are spacial patterns as
in Conways Game of Live), but relatively easy in others.
The last issue to be discussed here concerns stochas-

ticity. Obviously, the presented method is an approx-
imate one, because the estimate of f relies on very
complex simulation which involves a large number of
stochastic parameters. Therefore, care must be taken
in the interpretation of the results, especially if ∆N(N)
is close to zero in a bigger range. In this case, it is the-
oretically possible that a sequence of random numbers
is produced, so that an orbit which entered an attrac-
tor might eventually leave the region again. Although
generating large�scale N −∆N diagrams for the prob-
lematic region can bring along better understanding of
this e�ect, a real solution to the problem is to �nd ade-
quate stability measures based on probability theory.

6 Conclusions and Future Work

This paper presented a graphical method for the for-
mal analysis of ABSs at the example of the sugarscape
population model. The method provides a global view
of the system behaviour, which allows to predict and
understand the possible outcome of the simulation. It
also enables a bifurcation analysis for ABSs, by means
of which particular parameters in the interaction rules
can be related to particular dynamics of the model.
The paper therefore brings closer DS theory and

ABSs, for it shows that graphical tools often used in
the analysis of 1D discrete DSs can be applied to ABSs.
The key to such an analysis is the measurement of ag-
gregate variables of the simulation: the reproduction
rate and the death rate in the used population example.
By this means, it is possible to derive a approximate
iteration map of the form N t+1 = f(N t), representing
the time�evolution of the sugarscape population. This
map is graphically displayed in a N−∆N diagram, with
the result that the expected change from one iteration
to the next one, ∆N , is visible for all possible popu-



lation numbers. Straightforwardly, it is possible to �nd
out the equilibrium states (attractors) of the ABS, since
these regions are de�ned by ∆N(N) ≈ 0. Considering
∆N(N) in the neighbourhood of those regions, makes
clear whether a region is attracting or repelling. There-
fore, the diagram shows for which initial values which
equilibrium state is reached.
Comparing the N −∆N diagrams generated for dif-

ferent parameters in the rules of the ABS, facilitates
the bifurcation analysis of ABSs. This was shown for
the environmental sugar grow back rule G(α), as well as
for the reproduction rule R(a, b, c, d, e) with respect to e.
Although it is in general not possible to �nd an exact bi-
furcation value ẽ (for it does not exist, if stochastic pro-
cesses are involved), reasonable upper and lower bounds
of ẽ can be derived. The bifurcation analysis of ABSs
is an important step to understanding completely the
dynamics which possibly emerge from complex simula-
tions, and therefore, also a deeper insight into emergent
phenomena can be gained.
There are several issues to be addressed by future

research, the most important of which is the application
of the method to di�erent kinds of ABSs. As pointed out
in the previous section, this is expected to be feasible in
a considerable number of cases, but might be di�cult
in other ones. Another important task is the use of
other DS tools in the analysis. Especially the questions
concerning the dynamics within an attracting region, as
well as the actual stability of a detected attractor have
to be considered in the future. Knowing the probability
of orbits to leave an attractor, because of the stochastic
values of the ABS, would allow more de�nite knowledge
of the system behaviour as t → ∞. Once such analysis
means are established, a qualitative analysis of ABSs
comparing to the analysis of DSs will become possible.
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